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EXTREME VALUES OF BIRTH AND DEATH PROCESSES AND QUEUES

by

Richard F. Serfozo

Georgia Institute of Technology

Abstract

We study the asymptotic behavior of maximum values of birth and

death processes over large time intervals. In most cases, the

distributions of these maxima, under standard linear normalizations,

either do not converge or they converge to a degenerate distribution.

However, by allowing the birth and death rates to vary in a certain

manner as the time interval increases, we show that the maxima do indeed

have three possible limit distributions. Two of these are classical

extreme value distributions and the third one is a new distribution.

This third distribution is the best one for practical applications. Our

results are for transient as well as recurrent birth and death processes

and related queues. For transient processes, the focus is on the maxima

conditioned that they are finite.
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I. Introduction

When modeling the dynamics of a parameter of a system by a

stochastic process, the questions one addresses depend on the nature of

the parameter. In some instances, the extreme values of the parameter

rather than its usual values may be of paramount interest. In a

4% manufacturing plant, for example, a typical parameter is the queue length

of parts waiting to be processed at a work station. Small to moderate

values of the queue may indicate that the system is operating

successfully and the queue fluctuations are unimportant. On the other

4, hand, large queues may call for extraordinary measures such as allocation

of auxiliary storage space, employee overtime, or rescheduling of

production. A natural question is: What is the probability that the

queue will exceed a specific critical value in a certain time period?

Extreme value questions like this are the topic of this paper. More

specifically, our focus is on characterizing the asymptotic behavior of

the maxima of birth and death processes and related queues.

The gist of our study is illustrated by the following results for

the M/M/s queue. Consider such a queueing process in which customers

arrive to s servers according to a Poisson process with rate A, and the
-1

independent, exponentially distributed service times have mean o- . Let

n denote the maximum queue length in the time interval 1OTn] , where Tn

s is the nth time the system becomes empty. Our interest is in finding

* norming constants an, bn > 0 and a non-degenerate distribution G such

that

>' (1.1) lim P((Mn - an)/bn - x) =G(x),

n

for each continuity point of G. When such an, b, nC exist, we say that

IIV
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ei ' - M has the limit distribution G. Otherwise, we say that M does not have

alimit distribution. As usual, we consider only linear normalizations.

We can write M =max {YI"..,Yn ', where Yk is the maximum of the
-- ': n n

I then Y 1$Y2"'" are independent identically distributed random variables.

• " !.e From the classical extreme value theory for independent identically

/.. distributed variables (see for instance Galambos (1978) or Leadbetter et

: a l. (1983)), we know that the possible limit distributions for M nare

i-'.-'"only exp(-x - ) , x > 0, or exp(-e-X), xcR. One consequence is as follows;"i.-"this is a special case of Theorem 2.5.

THEOREM 1.1. If the queueing process is null recurrent (X sp), then

s -X -1

.-. ./0.
ni•Cohen (1969) proved an analogue of this for the M/G/I and G/M/1 queues;

related studies on extreme values of queue lengths and waiting times are

Heyde (1971) and Iglehart (1972).

Another classical result for discrete random variables is that the

i convergence (1.1) can take place only if

l*m P(Y m)/P(Y 1 > m-1) = 0. '.

Consequently, we have the following anomaly. 4

THEOREM 1.2. If the queueing process is positive recurrent (X < sp),

then does not have a limit distribution,

n f

This non-convergence theorem is surprising, especially in light of

Theorem i., since positive recurrent processes generally have nicer

properties than null recurrent ones. Cohen (1969) and Anderson (1970)

4.., disribued vriabes (ee fr istane Gaambo (198)-o.Leahettr.e



p3
give insights on typical liminf's and limsup's for the distribution of

(M n-a n)/b n -

Our point of departure is to establish the convergence (1.1) for

queues and birth and death processes in spite of the non-convergence

described in Theorem 1.2 and its generalization, Theorem 2.3. Our

approach is to allow the birth and death parameters (A,p,s for the H/M/s

queue) to vary with n when considering the convergence of H . Such

parameter variations in limit theorems are not uncommon. A classic

example is that if Sn is a binomial random variable with parameters n,p

and if p = Pn varies with n such that npn  A > 0 as n + -, then the

distribution of S converges weakly to a Poisson distribution with mean

VX.

Here is an example of our major results. Suppose M is the maximum,
n

as above, of an M/M/s queue, where the arrival rate A - A(n) and service

rate p = p(n) depend on n. Let pn - X(n)/(sp(n)).

THEOREM 1.3. Suppose that Pn 4 1 for each n and that Pn + 1. The

possible limit distributions for Mn are Go(X) = exp(-x-I), x ) 0; G.(x)

= exp(-e - x ), xcR; and

(1.2) G0 (x) = exp(-c/(e X-1)), x ) 0, for 0 < c < -.

The M has the limit distribution GC , where 0 f c < -, if and only ifn c

n(l-p n)/s! + c. Appropriate norming constants a n, bn are as in Theorem

3.1.

Note that G0 and G are classical extreme value distributions. The

third distribution (1.2) has not appeared in the literature before.

Numerical work has shown that this new distribution is the best one for

practical approximations. Namely, for the standard M/M/s queue with

traffic intensity p A /sp,

% ..
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P(-M n logO P x) =- exp( cn /(e k_-)), x ), 0,

where c - n(j-p). This approximation is good for n ; 15 and for all
<1

This completes our introduction. Here is what lies ahead: Section

2 consists of preliminaries, including classical convergence and

non-convergence theorems for extreme values of birth and death processes;

Section 3 contains our main results for recurrent birth and death

processes; Section 4 contains analogous results for transient processes;

and Section 5 gives applications to N/M/s and related queues.

2. Preliminaries

We shall consider a continuous-time birth and death process on the

nonnegative integers with birth rates ,)0'2 and death rates

0 1 0, P1 , 2 ,... This is a Markov process that evolves as follows:

*Upon entering state k, the process remains there for an exponentially

distributed time with mean (.+pk) - 1 , and then it moves to state k+l or

k-i according to the respective probabilities Xk/( +u k) and Mk/( +uk).

We assume for now that the process is positive recurrent or null

recurrent - transient processes are discussed in Section 4. We also

assume, for convenience, that the process at time zero begins in state

zero. Let M denote the maximum value of the process in the time.' n

interval [0,Tn], where T is the time of the nth visit of the process to
n n

state zero. The Mn and Tn are finite valued since the process is

recurrent. We shall study the asymptotic behavior of the distribution of

M as n +0.

We can write Hn = max{Y1 ,...,y n), where Yk is the maximum of the

birth and death process in the time interval ITk-1,Tk], here T0 - 0.

." Since the process is Markovian, the random variables Y ,Y ,... are

612
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independent and identically distributed. Consequently,

P(Mn 4 x) = P(Y 1 x,''',Yn 4 x) = F(x)n,

where F is the distribution of the Yk's. To obtain an expression for F,

A note that the successive states of the birth and death process form a

simple discrete-time random walk that moves from state k to state k+l or

k-I according to the respective probabilities Xk/( l+k) and Uk/( V k) .

Then clearly F(x) is the probability that, starting from state 1, the

random walk reaches state 0 before it exceeds x. Thus, from Section 1.12

of Chung (1967), we know that

x
(2.1) F(x) f 1 - ( Z rk)

k-0

where r0 = 1 and r k (PI ... k)/(Xl ... Xk), k ; 1. Furthermore, the birth

and death process is recurrent when ZkfO rk = 00 and is transient when

E r <.
k=O k

Here are some asymptotic properties of the ratio \/u , depending on

* -' whether the birth and death process is transient or recurrent; we let

(2.2) p = liminf '/k and p = limsup Yk"

LEMMA 2.1. If Z=Ork <as, then A1 pk > I for an infinite number of k's,

and p o 1. If =rk = , then p ( 1.

Proof. Suppose 'k0 rk < -. For any N o 1, we have

rN( NN k) / . ) - Z rk < -.

k-N kiN

Thus A/fk must be > I for an infinite number of k's; otherwise, the

first sum would be infinite. To prove p 0 1, fix c > 0 and let N be such
tv...-
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that X/Wk ; p - e, k )N. Then

Go N-I
E rkk + r N  Z (p- )

k=O k=O m=O

Consequently, (p-) - I < 1 for each e > 0, and hence p ) 1. The second

assertion is proved similarly.

Keep in mind that, for now, we are considering only recurrent birth

and death processes. Our interest is in the weak convergence of the

distribution

(2.3) P((M n - an)/bn 4 x) - F(an + b nX) = [1 - (1 - F(a + b x))In

where a and b > 0 are constants. It is well known that, for any YncR
n n

and - 4 C y < -, the convergence (l+*n)n * ey is equivalent to nyn  y•

This property applied to (2.3) translates into the following known result

(cf Corollary 1.3.1 of Galambos (1978) or Theorem 1.5.1 of Leadbetter et

al. (1983)). Here 0 • g(x) < -.

CONVERGENCE CRITERION 2.2. P((M n - a n)/b n  x) e- g( x ) as n - if and

only if n(l - F(a + b x)) + g(x) as n + -. Note that this criterion is

also true when F varies with n.

We begin by characterizing when the maximum Mn does not have a limit

distribution and when it might have one. Here we use the notation (2.2)

and R Y PtH
Z. k+ 1

THEOREM 2.3. (i) The maximum M does not have a limit distribution if
n

and only if

M- 1
(2.4) liminf E < .

n- k-0

(ii) Inequality (2.4) holds when E 0 limsup <m ( or when p < 1.
k-0'V.'.M
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(iii) Inequality (2.4) does not hold when Zr limnf akm or when
k-0 n m rwe

p ) 1. The condition p > 1 is equivalent to llr i/.k = 1.

. " (iv) If ak = lim % exists for each k, then inequality (2.4) holds if

and only if r k a<

Proof. (i) We know, from Theorem 1.7.13 of Leadbetter et aZ. (1983),

that there exist xn and 0 < T < - such that n(1 - F(xn)) + T as n + -m if

and only if

(F(m) -F(m -1))/(1 -F(m -1)) + 0 as m + c.

The latter condition, in light of (2.1), is

M-1 -
r/-I rk ( E ) + 0 as m +~k-O

Then, by Criterion 2.2, the M does not have a limit distribution if and
n

only if the last convergence does not hold, which is equivalent to (2.4).

(ii) If the sum nkO limsup %i is finite, then by Fatou's lemma this

finite sum is an upper bound for limsup - and hence (2.4) holds." e"~~~M+ - akm adhne(.)hls

Now suppose p < 1. Then for any c in the interval (p,l), there is a

number N such that Ak/Uk ( c for k ) N. It follows that, for m > N,

m N m
.. (2.5) -r Zr k + E akm

k=O k=O kfN+l
- -1 m-N N -N £

r c E r k+ E cN.k=O Z-0

*-'e + 1/(0 - c) as m + am

Thus (2.4) holds.

(iii) By Fatou's lemma, the sum Ek0 liminf %. is a lower bound for the

left side of (2.4). Thus, if this sum is infinite, then (2.4) does not

.. '

C **
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.1

hold. Now suppose p > 1. Then for any c < 1, there is an N such that

Ak/uk > c for k > N. The display (2.5) clearly holds with the inequality

reversed and so

m
liminf Z %. > 1/(-c).

" "+ W k=O

Letting c + I implies that (2.4) does not hold. To prove that p I 1 if

and only if lim k/pk = 1, we need only show that p > 1 implies
k +=

p p = 1. But this is true because, by Lemma 2.1, we know that

p (P 1.

(iv) This part is a consequence of parts (ii) and (iii).

The preceding theorem yields the negative conclusion that the

existence of a limit distribution for M is the exception rather than the
n

rule: There is no limit distribution for a typical positive recurrent

process with limsup k/pk < 1, but one might exist for an atypical
k .=

- process with lim "/pk = I (such as a null recurrent process). For those
k *

instances when there might be a limit distribution for M n, we have the

following properties from the classical extreme value theory.

r1-V. PROPERTIES OF M 2.4. (a) The possible limit distributions for M are
n n

-Y -x
only exp (-x ), x 0, or exp (-e ), xeR.

(b) The first of these distributions is the limit if and only if

Sg't tx
(2.6) (1 - F(tx))/(l - F(t)) = E rk/ E rk + xY as x+-.

k=O k=O

Appropriate norming constants are an = 0 and bn = min{m: =Ork > n).

(c) The second distribution in (a) is the limit distribution for M if
n

and only if there is a positive function g(t) such that

4

-4.4

4. A J..J# **.,* * '% - '
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t t+xg(t)

(2.7) (1 - F(t + xg(t)))/(1 - F(t)) = E rk/ E
k-O k=O

-X
c as t .

In this case, one can choose
• :- t k r)l

g(t) = _rk kZt m

k=O k=t m=-O

and an = min{m: brk ) n} and bn = g(an).

A special case of (b) is as follows. This applies, for instance, to

a null recurrent process with 'k = Uk, k ) s, for some s (such as the

M/M/s queue in Theorem 1.1).

THEOREM 2.5. If Ek O II - (/kl <  then

-1

(2.8) lim P(Mn/nb < x) = e-x  , 0
n 

n*

where b = H
k= 1

Proof. A basic property of infinite products of real numbers is that

": (1-ak) exists when Ek=l akI <  In light of this, the hypothesis

k=1

implies the existence of the limit b. Now

k
lim rk lim I ii/ , b- 1

k k+ k-* X=1

Consequently, n- I  rk and so

1 nbx
n(l - F(nbx)) [bx(nbx) Z rk]- + x as n +.

k=O

This convergence and Criterion 2.2 yield (2.8).

3. Main Results

41.

We saw above that the maximum M does not have a limit distribution.4.. n

for a wide class of birth and death processes, including those in which

. .. ."

9.-' . ....,.4.. . .. .... :: ... ...,-% ..,: . ....-....:.:: .. :-.-... . . ., . .:......... .. ....- .
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A limsup X < 1. However, Mn might have a limit distribution when

iim X/ k - 1. These negative and slightly positive findings prompted

k+=

us to explore the convergence of M when the parameters X and

1' k =nk vary with n such that Xnk/nk is nearly I for large n and k.

This is the basis of our following results.

Consider a sequence of recurrent birth and death processes indexed

by n = 1,2,..., where the nth process has the respective birth and death

. rates nk and nk when in state k = 0,1,... For the nth process, let Mnk n

denote its maximum up to the time of its nth return to state zero. This

M has the same meaning as the one in Section 2, but here its defining
n

parameters X nk , ..%k vary with n as well as with k. That is, M n is the

maximum of n independent random variables with the common distribution

x
F n(x) = 1- ( nk
nk=O

where r = 0 and rnk = ( ... jnk)/( nl... Xnk) k P 1.
nO nini nk

We shall assume that, for each n, there is a positive number p < 1

~and a positive integer s such that
n

(3.1) Ank/ nk Pn for k s

and

5
- 1 n

(3.2) lim n r =0.
n += k=O nk

"' The parameter s may be bounded, unbounded, or independent of n, such as
n

-- -k
s = 1. Assumption (3.1), with pn 1 1, implies that Z rk p
n n k nk k=s n

n

eq

' -,*". -.- ° • . - • . • . . ° - . . - °- - o . * :, .. ,.... - . . . . . . ., -



a2,.' 11

= , which ensures that the nth birth and death process is recurrent.

Assumption (3.1) is satisfied automatically for M/M/s queues: the s is
n

the number of servers. Assumption (3.2) holds when sn and rnk are

bounded or when ink r B for k 4 s and s B /n + 0.
n n n n

We shall show that when pn + 1, the possible limit distributions for

(Mn - a )/b are as follows. Here c = lim c and
n n n

s

(3.3) cn = n(1 - Pn)r s= n(1 - pn)k = Xnk/Unk .

Case Limit Distribution Norming Constants

c = 0 Go(x) = exp(-x ),x)O, a = s -1 b =n--X /nk
/

n n n "nkk=1

0 < c < Go(x) = exp(-c/(e-1)) a =s -1 b -I/logpc n n n n

-xC= 0G (x) = exp(-e ), xeR, a = s 1 -logc /logp00- n n

b = -/log pn n

An easy check shows that the distributions G (0 4 c o) are of distinct
c

type: G and Gc, are of the same type (Gc (x) = G ,(a + bx) for some a,b)
c c c c

if and only if c c'.

The following result gives sufficient conditions for the existence

of limit distributions for M

THEOREM 3.1 Suppose (3.1) and (3.2) hold and pn + 1. If c c as
n

n + -, where 0 4 c ( , then

(3.4) lim P((M - a )/b x = G (x), xcR,
, n +

where the Gc, an, bn corresponding to the limit c are displayed above.

nn€." Proof. By the Convergence Criterion 2.2, it suffices to show that c c

implies
-1

(3.5) lim n(l-Fn(a n + bx)) = x I when c - 0
n +

x
= c/Ce -1) when 0 < c <

Ut
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,e when cm.

To this end, let m (x) denote the integer part of a + b x. Usingn n1 n

(3.2), we have

-1 n(x) -1
(3.6) n(I - F n(an + bn x)) - (n E r

nn ~ k=O n
s -1 -1 n (x) -(k-s)y-1

;,""' =(n- n r nk + n r s Ep n  n

k=O n k=s
n

(oi) + zn(x) I

where
, ;.-Sn-mnCx)

zn(x) = (Pn - p)/C when p 1

= (M (x) - S )/(nrn ) when Pn 1.
n n ns

-1
Then to establish (3.5), it suffices to show that zn(x) converges to

the values on the right side of (3.5). Three cases present themselves.

Case 1: c + c = 0. Here
n

-1
m x) = a + b x + 0(l) s - I + xnr + 0(1).,.-n n n n ns

n

First consider the special situation in which pn = I for each n. Using

nrns + 0, we have

- -1 /(M
(x) =n ((x)-s),.n, Z=nns n -

n
-1 -1

("x + o() + x as n,,.

Next consider the general situation in which Pn + 1. Because of the

preceding, we may assume that pn < I for each n.

Using

logp (1- p)+o(l- p ) and eu =I+u+o(u)
n n n

as u 0 0, it follows that
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s -m (x)
Pn  - n = exp[(sn m n(x))logpn -Pn

= exp[xc + 0(1-pn)] - Pn

= 1 + xc + 0(l-p) + o(c) - Pn.- n nn

= xc + O(1-P) + o(c)•

Substituting this in the expression for z n(x), and using (1-p n)/c n

-1 r +0, we have the desired convergence
n

zn(X)-I = [x + 0(1-pn)/C n + o(1)] -  + x - 1 as n +.

Case 2: c + 0 and 0 < c < -. Here
n

m (x) = s - I - x/logPn + 0(1).

Using logpn = o(I), we have

- Zn(x)- = Cn/(exp[(s n - mn(x))logpn] -n )

= Cn/(exp[x + o(1)] - p

nn

+ c/(ex- 1) as n +-•

Case 3: c +c= . Here
n

mn(x) = Sn - 1 - x/logPn + logcn/logp n + 0(1).

Using logpn = o(1), we have
sn - ran(X), , , x+o(1)

= exp((s - m (x))logpnl - ce

Thus

Zn(  = (eX+ ) - n e x as n +®.

This completes the proof.

Theorem 3.1 says that the convergence of c is sufficient for M to
nl n

have a limit distribution when pn + 1. The next result says that the

convergence of c is necessary as well, and that M has no limit
*n nl
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distribution other than those above.

THEOREM 3.2. Suppose (3.1) and (3.2) hold and pn + 1. The possible

limit distributions for M are G , 0 4 c 4 . and M has the limitn c n

distribution G if and only if c + c as n + -*SC fl

Proof. Suppose M has the limit distribution H. Since [0,-] is a closedn

set in the extended real line, there are positive integers nk +- and c

,-.. in [0, =] such that c + c as k + . Then by Theorem 3.1, we know thatnk

M has the limit distribution G • Moreover, M also has the limit- , nk c n k

distribution H. From Khintchine's theorem on convergence to types of

distributions (see for instance Theorem 1.2.3 of Leadbetter et al.

*. (1983)), it follows that H and G are of the same type. This proves that

any limit distribution of M must be one of the distributions Gc,
n

0 4 c .

We now prove that cn c is necessary and sufficient for M to have

a limit distribution. The sufficiency follows from Theorem 3.1. To

prove the necessity, suppose that Mn has the limit distribution G c . Let

c be any convergent subsequence of c and let c' = lim c . Arguing as
nknnk  nk+= nk

in the last paragraph, it follows that Gc , as well as c is a limit
C c

distribution of M and that GC and G are of the same type. Conse-~n Co  ctye

quently, c' - c. Thus, we have shown that any convergent subsequence of

c must converge to c and hence c + c.
(,-. .n n

APPROXIMATION OF P(M ( x) FOR PRACTICAL APPLICATIONS 3.3. Consider the

maximum M of a birth and death process with rates Xk'pk (without the
n

artificial dependence on n) that satisfy '/Pk - p, k ) s, for some 0 < p

< I and s > 1. Theorems 3.1 and 3.2 yield the approximation

(3.7) P((M n - s + 1)(-logp) x) - exp(cn/(ex - 1)), x
n n
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s
where c (-)11 Vlkand n is lren(1-p) E k/=1ndni large.

There are analogous approximations for P(M n x) by G0 when c is

small and by G. when c n is large. However, these are not as good as

a. (3.7), which is superior for any c n This is because GO and G. are only

theoretical limits for the two "unobtainable" values of c in [0,-]; they• , n

are not functions of the actual c n as the right side of (3.7) is. For

the case when the process is null recurrent (p=l), Theorem 2.4 yields the

5

classical approximation P(Mn/nb 4 x) 5 Go0X), where b - k n We
k= 1

were pleasantly surprised that the approximation (3.7) is accurate even

when p is not near one. This is apparently because p appears on the

right as well as left side of (3.7). For the M/M/i queue, we found from

numerical computations that the difference between the two sides of (3.7)

is below 0.018 when n - 15 and below 0.01 when n = 20, for any p in

(0,1).

PROPERTIES OF THE LIMIT DISTRIBUTIONS 3.4. Let X denote a randomC

variable with distribution Gc, 0 4 c 4 -, and let Y denote an

exponentially distributed random variable with unit mean. Standard

change-of-variable computations show that

he 0 --logY, c D log(Y + c) - logY, 0 < c <

where these are equalities in distribution. Solving the equations for Y

a. and using obvious substitutions, we also have

X 0  =exp(-X.) c/(exp(Xc) - 1)

X., logX0 ' log((exp(Xc ) - )/c)
0 c

x c 4 log( + cX0) log(l + cexp(-X)).

The G can be viewed as the limit of C as c + - in that
GoC
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G (x + logc) * GJx) as c (i.e. X - logc It is known that

EXO- E(-logY) - - f e- y logy dy -y,
0

m
where y = .5772... is the Euler-Mascheroni constant y l 11m ( 1 I/n-

m-m n-1

logn), and

E(e ) = E(Y-c) - rl-a), for a < I,
u-i -u

where r(a) f u e du. In comparison, for 0 < c < m we have
0

EX C E(log(c + Y) - logY)

C _

=-C e fe logu du + y.
--7. 0

Hence

EX = Y + eC(yc - Y)

where = - feu logu du, which can be interpreted as the
0

Euler-Mascheroni constant on [O,c] (recall that y. - y). The yc can be

computed by numerical integration; it is a positive continuous function

in c that increases on [0,11 and decreases on [1,-]. Furthermore, using

the binomial expansion, we have

0* Z(exp(aX ) E(I + c/Y) =  E ro + k - a), for a < 1.

- ( k-i

We end this section with further insights into the irregular

behavior of M . Can M have a limit distribution when p does not
n n

converge to one? Can M have a discrete limit distribution? The
n

following results show that the answer to each of these questions is

yes.

PROPOSITION 3.5. Suppose the birth and death processes satisfy (3.1),

(3.2) and pn + p < 1. Let a be a sequence of integers. Then the

n%

a,.

N P~.~~9~.a
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distribution of M - a converges weakly to a nondegenerate limit H as nSn n

+ - if and only if

-1 S -a-I n n
(3.8) n r * O a > 0 as n +.

n

In this case,

H(x) = exp-c-l( 1 -p)x]), xcR,

where [x] denotes the integer part of x (H is concentrated on the

integers).

Proof. With no loss in generality, we may assume that Pn < I for each n.

By (3.6) with m (x) = a + [x], we have
n  n

s -a -[x-n~ -F~a +x) (() -1rn (n a - n)/(1 - n)) - In n

n
-1Recall that a rns 0 because of (3.2). Then clearly

n

n(1 - F n(an +x)) * a-l( 1 -)pi if and only if (3.8) holds. Hence, the

assertions follow by Criterion 2.2.

Proposition 3.5 may not be too useful for applications since (3.8),

apparently, is rarely satisfied. Indeed, we know from Theorem 2.3 (i)

that there do not exist an that satisfy (3.8) when Ank' nk' n and Pn

U are independent of n. A subtle variation in these quantities as n-m is

therefore needed for the existence of a that satisfy (3.8). Here is

such an instance.

" -1I[ logn]
EXAMPLE 3.6. Consider the special case in which X n/Mnk- n

k P s, and 1 X A/nt + Y > 0 as n + a. Then (3.1) and (3.2) hold and

_-11
Oa' exp(-logn/[logn]) + e 1 Let an  [lognJ. Then

%%
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s-a-1 n s -1 -s
n rnsPn r ns Pn y e as n .

Hence Proposition 3.5 yields

lir P(M - a 4 x) = exp(-e - ix ) x]R,
n +n

where = ye (1-e-). This limit distribution is a discrete version of

G,(x) exp(-e
- x)

.- 4. Extreme Values of Transient Processes

Consider a birth and death process, as in Section 2, with rates

'k " Assume that the process 
is transient, that is, the sum B g o rk

' '"k- kfO

is finite. Let Mn denote the maximum of the process up to the time T of

its nth return to state 0. Because the process is transient, the M and

T may be infinite: 
from (2.1) we know that

n
P(o X- E ) ,ads (

P(M1 ( x) = I - ( r r), and so P(MI < m) = I - 1/B < I. Of interest,

therefore, is the asymptotic behavior of M conditioned on M < ..% n n

Accordingly, we now consider the convergence of the conditional

distribution

(4.1) P((M n - an)/bnr x Mn < u) - H(a n + b x) n

-.: where

-
(4.2) H(x) = P(M1  e x I < ) = (1 - ( £ rk) -)/(1 -1/B).

Similar to the terminology above, we say that M conditioned on

Mn < c has a limit distribution or doesn't have one according to whether
l

or not the distribution (4.1) converges weakly to a nondegenerate

p°a:~i

'..,/
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distribution. The following result is analogous to Theorem 2.3. Here we

k
use p= liminf pk/=k, p-- limsup Xkljk, and mk m+ /Xm+t

THEOREM 4.1. (M) The M conditioned on M ( o does not have a limitn n

distribution if and only if

(4.3) liminf E S <-

m+- k=m

(ii) Inequality (4.3) holds when 0 limsup 8 k < or when p > 1M
<  

ohO
(iii) Inequality (4.3) does not hold when E" liminf 8ik = or when p

1 1. The condition p 4 1 is equivalent to lim kk/k = 1.
k +m

(iv) If i - im 8mk exists for each k, then inequality (4.3) holds if

and only if Ek0 8 < -
"

Proof. From (4.2) and a little algebra, we get

(4.4) (H(x) - (x - 1))/(l - H(x- 1)) - E rk/ rk)( -- 8 -)
k-O k-0 k=m

Then arguing as in the proof of Theorem 2.3 (I), it follows that M

conditioned on M n -does not have a limit distribution if and only if

expression (4.4) does not converge to zero, which is equivalent to (4.3)

4.' (the first term on the right of (4.4) converges to one).

Part (iii) follows since, by Fatou's lemma and the product form of

mk , we have

liminf Z 8 E- liminf 8 E b-k

m,- k=m k-O m ,' k=O

and the second assertion in (iii) is proved the same way its analogue in
4.'.
.4.

% •.
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Theorem 2.3 (iii) was. Part (ii) follows by a similar argument, and part

(iv) is a consequence of (ii) and (iii).

Theorem 4.1 says that for a typical transient process with liminf
k '

X /U.k > 1, there does not exist a limit distribution for M conditioned
kK n

on M < , but there might be a limit for a process with lim )/lk = 1.

When it is possible for the limit to exist, then the asymptotic behavior

of Mn conditioned on Mn < , is analogous to Properties 2.4. Here we have

a further simplification.

REMARK 4.2. The distribution (4.1) has the same limiting behavior as the

x
distribution H(an + b ,X) where if(x) = B Z r k  This follows since

k=O
x

1 - H(x) = (1 - H(x))/((i - B- ) Z rk),

k=O

and so ratios of the form (0 - H(x n)/(0 - H(y n)), like (2.6) and (2.7),

have the same limiting behavior as (I - H(xn))/( - fl(yn) when x, Yn +

. The preceding observations lead to the study of M when the ratio

X/uk depends on n and is nearly unity for large n. Accordingly,

consider the maximum Mn, as in Section 3, for a sequence of birth and

death processes with rates Xk, pnk that depend on n as well as k. Then

nk nn
P(Mn 4 x I Mn < ) H(X) n

where

x
-1

H(x) (I-( E r n) M(1I/Bn),
k=O

-- " andr = 1
no

SA

-U.

U.
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= ..... lik/ B= E r..
nk ( an l  n1 nk) n l nk) ' Bn k=0

Assume that (3.1) and (3.2) hold and that pn > I for each n. Then each

birth and death process is transient since B is finite:
n

(4.5) B = r E p- = r /(1 - /Pn).5n nSn m=O n ns n

-..%6 The following result, analogous to Theorems 3.1 and 3.2 combined,

says that when pn + 1, the possible limit distributions for Mn

conditioned on M < o are G , 0 4 c 4 -. Here we letn C

c = n(l - 1/ )re = 1r c
n n ns n

and

a =s -1 b = nr when c =0n n n ns
n

a =S - b = 1/logp when 0 < c < *n n n n

a = s - 1 - log(lI/c - /n)/logp b = 1/logpn  when c =

This notation is that of Section 3 with pn replaced by I/p and the last

a changed slightly.

THEOREM 4.3. Suppose (3.1) and (3.2) hold, pn > I for each n, and

P n + I. Then M conditioned on M < - has a limit distribution if andnn

only if c + c where 0 r c 4 m. In this case
n

(4.6) lim P(M - an)/bn 4 x M ( < ) = G(x), xcR,n n n nn-c
n 4

where a ,b are defined above.
nn

Proof. We will prove that c + c implies (4.6). Then the rest of the

assertion will follow by the argument we used in the proof of Theorem

3.2. Similar to (4.5), we can write, for m > Sn,

m n--s -m+s -1
-L_ n" (4.7) Z k = r n r (1 - n  )/(1 - o/pn).

k= n s. 0  ns n

I_,



22

Let m n(x) denote the integer part of a n+ b nx. Then using (4.5) and

(4.7), we have

m (x)

(4.8) n(l - H (a~ + b x)) = n(B/ E rn - 1)/(B - )
k=0

C cM(i -M n (x)+sn- 1 01/(0 - c/.n)

1/((/c In)(mn (x)-s n+1 M

Suppose c n ,wee0 4 c < -. Then by Cases l and 2 in the proof

of Theorem 3.1, with p replaced by p-1, it follows that

Sn (x)-sn
(4.9) lrn n(l H n(a n+ b nx)) =r ci n( - 1)

n nc n nw

=X when c= 0

-c/(e - 1) when 0 < c < ~

Next, suppose c + ~.Here
n

M n(x) = s n 1 - log(1/c n I/n)/logp n+ x/logp n+ 0(1).

Using this in (4.8), we have

m (x)-s +1
(4.10) lim n(1 H (a + b x)) =lim 1/0l/c - l/n)p Pn n n n n

=lirn exp(-( n (x) - s n + 1 )logp - log(1/cn - /n))
n -9-n

-x
=e

Thus, (4.9), (4.10) and Criterion 2.2 yield (4.6).

REtMARK 4.4. The analogue of Approximation 3.3 for the birth and death

process with X.k/lik = p, k ;o s, and p > 1 is as follows

n s + n n
5

where c n n( - np) H V) = n
n-nk=1

'7

! .'. . '.
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5. Extreme Values of Queues

We now apply the preceding results to the M/M/s and related queues.

The M/X[/s queueing process described in Section 1 is a birth and death

process with birth rate Xk = X (the Poisson arrival rate of customers)

and death rate Pk = w min{k,s} (the rate at which k customers depart from

the s servers).

For our first result, we suppose M is the maximum of this H/M/sn

queue up to the nth time the system becomes empty. The limiting behavior

of M depends on the queue's traffic intensity p = X/sp. The queueingn

process is positive recurrent when p < 1, null recurrent when p = 1, and

transient when p > 1. The following is an immediate consequence of

Theorems 2.3, 2.5 and 4.2.

COROLLARY 5.1. If p < 1, then M does not have a limit distribution. Ifn

p= 1, then

-1

(5.1) lim P(mn/nb 4 x) = e-x , x > O,
n+o

where b = (X/ )Ss!. If p > 1, then M conditioned on M < -does notn n

have a limit distribution.

For the next result, we suppose that Mn, as in Sections 3 and 4, is

the maximum for an M/MIs n queue with arrival rate Xnk - X(n), service

rate pnk - j(n)min(ks n, and number of servers sn . The traffic

intensity of the queue is pn = X(n)/(Sn (n)). Clearly Xnk/lnk -n , for

k > s . We will use
n

r = p jn£/In = Sn!(j(n)/A(n))
n

-1
COROLLARY 5.2. Suppose n r + 0 and Pn I

ns. n

.
•



-W.WMLWAV W WA4

24

(1) If P 4 1 for each n, then M has a limit distribution if and only

if n(1 - )r + c, where 0 < c < o. In this case, the limit distri-
n

bution is Gc and appropriate norming constants are as in Theorem 3.1.

(ii) If p > I for each n, then M conditioned on M < - has a limit
n n n

distribution if and only if n(1 - 1/p )r- I c, where 0 < c <oo In
n ns

r this case, the limit distribution is G and appropriate norming constants
c

are as in Theorm 4.3.

Proof. The two assertions are special cases of Theorems 3.1, 3.2 and

Theorem 4.3, respectively. Note that condition (3.1) is satisfied, and

so is (3.2) since

s

n k nk < 2n-1 r + 0.
". k=0 nn

" REMARKS 5.3. (a) The number of customers in an M/M/- queueing system

over time is a birth and death process with rates Xk = X (the Poisson

arrival rate of customers) and Pk = kp (where p is the service rate of

each of the infinite servers). The traffic intensity is p = X/P. The

first and third assertions of Corollary 5.1 also hold for this queue, but

*"-. there are apparently no analogues of (5.1) or Corollary 5.2.

b) Consider a service system in which the number of customers in the

system over time is a birth and death process with rates Xk' , 1k that

represent customer arrival and departure rates when k customers are

present. We assume that X /Ik = p for k ) s, where s is a specific

* state, but we place no other restriction on the rates. We call this an

M/M/GR-s queueing process, where GR stands for general rates. General

rates are used for modeling such phenomena as balking and reneging of

,* customers; non-standard service disciplines; dynamically changing rates
V %
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under a control policy that minimizes the system cost; and simultaneous

customer processing, where Pk is the total workrate when k customers are

* , present and customer i receives pI of the workrate (p +...+pm = ).

* '-Corollaries 5.1 and 5.2 readily extend to M/M/GR-s queues.

_ (c) The approximations (3.7) and (4.11) apply to the K/M/s and M/M/GR-s

queues.

-. Q -
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